Bounds for algorithms in differential algebra
نویسندگان
چکیده
We consider the Rosenfeld-Gröbner algorithm for computing a regular decomposition of a radical differential ideal generated by a set of ordinary differential polynomials in n indeterminates. For a set of ordinary differential polynomials F , let M(F ) be the sum of maximal orders of differential indeterminates occurring in F . We propose a modification of the Rosenfeld-Gröbner algorithm, in which for every intermediate polynomial system F , the bound M(F ) 6 (n − 1)!M(F0) holds, where F0 is the initial set of generators of the radical ideal. In particular, the resulting regular systems satisfy the bound. Since regular ideals can be decomposed into characterizable components algebraically, the bound also holds for the orders of derivatives occurring in a characteristic decomposition of a radical differential ideal. We also give an algorithm for converting a characteristic decomposition of a radical differential ideal from one ranking into another. This algorithm performs all differentiations in the beginning and then uses a purely algebraic decomposition algorithm.
منابع مشابه
Bounds and algebraic algorithms in differential algebra: the ordinary case
Consider the Rosenfeld-Groebner algorithm for computing a regular decomposition of a radical differential ideal. We propose a bound on the orders of derivatives occurring in all intermediate and final systems computed by this algorithm. We also reduce the problem of conversion of a regular decomposition of a radical differential ideal from one ranking to another to a purely algebraic problem.
متن کاملInvariant elements in the dual Steenrod algebra
In this paper, we investigate the invariant elements of the dual mod $p$ Steenrod subalgebra ${mathcal{A}_p}^*$ under the conjugation map $chi$ and give bounds on the dimensions of $(chi-1)({mathcal{A}_p}^*)_d$, where $({mathcal{A}_p}^*)_d$ is the dimension of ${mathcal{A}_p}^*$ in degree $d$.
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملCoefficient bounds for a new class of univalent functions involving Salagean operator and the modified Sigmoid function
We define a new subclass of univalent function based on Salagean differential operator and obtained the initial Taylor coefficients using the techniques of Briot-Bouquet differential subordination in association with the modified sigmoid function. Further we obtain the classical Fekete-Szego inequality results.
متن کاملBounds and algebraic algorithms in differential algebra : the ordinary case ? ( extended abstract )
Consider the Rosenfeld-Groebner algorithm for computing a regular decomposition of a radical differential ideal generated by a set of ordinary differential polynomials. This algorithm inputs a system of differential polynomials and a ranking on derivatives and constructs finitely many regular systems equivalent to the original one. The property of regularity allows to check consistency of the s...
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کامل